INCREMENTAL RULES FOR GROWING PLANTS

Andrew Davison
Department of Computer Engineering
Prince of Songkla University
Hat Yai, Songkhla 90112, Thailand

E-mail: dandrew@ratree.psu.ac.th

KEYWORDS

3D worlds, rules-based programming, animation tools, 3D
authoring tools, toolboxes for moving graphics.

ABSTRACT

L-systems are widely used for plant modeling and
simulation, with remarkable results. However, we argue
that the mathematical formalism underpinning L-systems
encourages inefficient rendering of plants which grow and
change over time. We propose new types of rules which
emphasize the incremental nature of change in a plant’s
elements, and highlight an element’s relationships with
other components (e.g. a plant limb has a parent, children,
and occurs at a certain level in the overall structure). We
have implemented a Java 3D prototype using this approach,
and compare it with code using a standard L-system.

INTRODUCTION

Lindenmayer systems (L-systems), consisting of rewrite
rules, have been widely used for plant modeling and
simulation, due to the direct mapping between the string
expansions of the rule system and a visual representation of
a plant (Prusinkiewicz and Lindenmayer, 1990;
Prusinkiewicz and Hanan 1990; Prusinkiewicz et al. 1993;
Prusinkiewicz et al. 1999). For example, the following
bracketed L-system contains a single start string ‘F’, and
the rewrite rule:

F — F [-F] F [+F] F

The visual characterization is obtained by thinking of each
'F' symbol as a limb (or module) of the plant. The bracket
notation can be viewed as a branch-creation operator; the '-'
as a rotation to the right for the branch, '+' a left rotation.

Since each limb is an ‘F’ symbol, rewriting can continue,
creating longer strings, and more complex plant-like
shapes.

Each rewrite causes all the limbs (modules) of the current
tree to be replaced in a parallel derivation step, reflecting
the simultaneous passage of time in all parts of the tree.
Time is viewed as discrete, represented by the sequence of
derivation steps.

GROWTH AND L-SYSTEMS

Our application domain is a networked 3D virtual world,
which changes over time — day turns to night, and
plants/trees grow. The scenery is not photo-realistic; more
emphasis is placed on the fast rendering of a large number
of relatively simple shapes representing different kinds of
trees. At certain times, these trees need to grow extremely
rapidly.

The application is implemented in Java 3D, a high-level 3D
graphics library for Java (see http://java.sun.com/
products/java-media/3D/). In the first version of the
application, a L-system generated strings which were
passed to a rendering component to be turned into trees
made from groups of coloured cylinders and other objects.
Growth was represented by having the L-system pass the
current strings to the renderer at the end of each derivation
step. The renderer would dispose of the old 3D trees,
generate new trees using the strings, and add them to the
scene.

This approach proved to be very slow, and quickly ran out
of memory when more than about ten medium-size trees
were placed in the scene. The slowness was partly caused
by Java 3D’s slow run-time removal and addition of scene
objects, and the subsequent garbage collection of the
discarded trees. Also, as the L-system strings became
larger, the renderer required increasingly large amounts of
memory to recursively parse the strings and create the 3D
shapes.

Part of the problem is due to Java 3D, but we also identified
four problems with the L-system: two fundamental ones
present in the rule formalism, and two minor ones that are
language-related. We discuss the two serious issues first,
then the lesser two.

Rewriting = Replacement

Each rewrite of a L-system string creates a more complex
tree, but it is hard to see how the new tree has 'grown' out of
the simpler one. For instance, what part of the current tree
is new wood, which is old wood that has grown a little?

A L-system represents growth as a new structure
completely replacing the old one. That is unimportant when
the structure is a mathematical abstraction, but has serious
consequences when implementing a growth algorithm. The

natural approach, and the most disastrous from an
efficiency point of view, is to discard the current structure
at the start of a rewrite and generate a new one matching
the new string expansion. There is no simple alternative to
this since the L-system does not distinguish between old
elements (either changed or unchanged) in the structure and
the new parts.

No Tree Relationships

Another drawback of the L-system notation is its lack of
tree nomenclature. For example, it is not possible to talk
about the parent of a node, its children, or its level in the
tree. To be fair, some of these capabilities can be
programmed by using parameterized L-system rules.
However, we believe that a production system for plant
modeling should contain intrinsic ways of talking about the
branching structure that it represents.

Locating Limb (Module) State

Limb state includes information such as the present length
of a limb, its current colour, and its age. Parameterized L-
systems handle state by adding additional parameters to the
rules, which tends to lead to large rules. Arguably, this
solution places the data in the wrong place: state details for
each limb should be located inside the particular limb rather
than in the rules which are applied to all the limbs. This is
really an argument for an object-based view of limbs, rather
than a procedural one centered around the rules. Benefits
include the ability to hide state, improved modularization,
and cleaner abstractions.

Rule Reuse

Large groups of L-systems rules often contain very similar
rules for the different plant elements. For example, most
types of limbs will grow for a period of time (represented
by a recursive, parameterized rule), followed by the
appearance of child limbs as branches sprout (this is often
called a decomposition rule).

Once an object view of limbs is utilized, it follows that
plant node types should be represented by classes with their
own data, methods, and rule behavior. Commonalties
between the classes, whether in their state or rules, can be
dealt with by subclassing.

INCREMENTAL RULES

Our principal change to the L-system formalism is to utilize
rules which specify rewrites as incremental changes to
existing limbs, such as a gradual increase in length or a
deepening colour. Child branches can be spawned, but are
defined in terms of how they are added to their parent limb.
This requires the introduction of a tree notation so that the
parent-child relationships can be stated.

We implemented our ideas in Java, so gaining the
advantages of OOP. In our prototype system, a limb is
represented by a TreeLimb class, which has over 20 public
methods, roughly classified into five groups:

e scaling of the cylinder's radius or length;

e colour adjustment;

e parent and children methods;

e leaves-related;

e various others (e.g. accessing the limb's current age).

The system is activated every 100ms (the time interval
between rewrites), and applies its rules to all the TreeLimb
objects, affecting a parallel rewrite analogous to the
L-system model. The difference lies in the incremental
nature of the rules.

The rules have an if-then form, where the action is only
carried out if the conditions evaluate true for the current
limb.

The rest of this section contains descriptions of the simple
‘length’ and ‘thickness’ rules, and the slightly more
complex ‘child limbs spawning’ rule.

The ‘length’ rule incrementally increases the length of a
limb up to a maximum of about 1 unit:

if ((limb.getlLength() < 1.0f) &&
'1imb.hasLeaves())
limb.scalelLength(1.1f);

limb is the current TreeLimb object under consideration.
The hasLeaves () part of the condition stops branches
from growing any longer once they have leaves.

The 'thickness' rule mandates how a limb’s thickness should
change:

if ((limb.getRadius () <=
(-0.05f*1imb.getLevel () +0.25f))
&& !limb.hasLeaves())
limb.scaleRadius (1.05f) ;

The equation -0.05*1imb.getLevel () +0.25 relates the
maximum radius to the limb's level. For example, a limb
growing directly out of the ground (level == 1) can have a
larger maximum radius than a branch higher up the tree.
This means that branches will get less thick the higher up
the tree they appear, as in nature.

The ‘child limbs spawning’ rule creates at most two child
limbs:

if ((limb.getAge () == 5) &&

(treelLimbs.size () <= 256) &&
'Timb.hasLeaves () &&
(limb.getLevel () < 10)) {

if (Math.random() < 0.85)
makeChild (randomRange (10,30), limb);

if (Math.random() < 0.85)
makeChild (randomRange (-30,-10), limb);

The four conditions only permit child limbs to appear if the
parent is at least 5 time intervals old, the total number of

limbs in the scene is less or equal to 256, the parent has no
leaves, and the branch isn't too far up the tree.

Math.random () is employed to make it less certain that
two children will be spawned. randomRange () returns a
random number (in this case, an angle) in the specified
range.

makeChild ()'s definition:

private void makeChild(double angle,
TreelLimb par)
{ TransformGroup startLimbTG =
par.getEndLimbTG () ;
int axis = (Math.random() < 0.5) ?
Z_AXIS : X_AXIS;
TreeLimb child = new TreeLimb (axis,
angle, 0.05f, 0.5f,
startLimbTG, par);
treeLimbs.add (child) ;
// add new limb to tree limbs list
}

The first line gets the 'end point' of the parent limb, which
becomes the place where the child is connected.
Math.random() 1is used to randomize the child's
orientation axis.

Figure 1 shows a sequence of screen shots of the
application. Five trees grow from saplings, young green
shoots turn brown, leaves sprout, all taking place over a
period of a few seconds.

Figure 1: Growing Trees

DISCUSSION

The application carries out very little garbage collection, in
contrast to the original L-system-based code, because the
trees are not being repeatedly regenerated. In fact, no tree
limbs are discarded at all.

The application’s main control structure is a time-triggered
loop through all the limb objects, applying the rules to each
one. The original code uses recursion to generate all the
limbs in each tree from scratch in every derivation step. It is
hardly surprising that the new application has a much faster
rendering time (sometimes twice as fast).

Over 4000 limbs can be created before the application
needs additional heap space, compared to tens of limbs in
the original code. This is due to the reduced garbage
collection needs and the use of looping rather than
recursion in the rendering.

Time is represented discretely, and growth is defined in
incremental steps rather than as differential equations (e.g.,
as in dL-systems). The primary reasons for this choice was
to make rule definition simpler: most users find the
specification of differentials rather difficult. This approach
also avoids the need for a run-time solver for the equations.

Java offers the advantages of OOP, and each limb is
represented by its own object. The principal limb class is
TreeLimb, which can be subclassed easily.

A drawback of our application is the complexity of the
rules which refer to graphical elements of the 3D models.
For example, makeChild() utilizes a Java 3D
TransformGroup node to connect a child to its parent.
This suggests the need for a higher-level notation which
hides connection details.

The application shown in Figure 1, together with a more
detailed explanation of its implementation can be found at
http://fivedots.coe.psu.ac.th/~ad/jg/chl78.

REFERENCES

Prusinkiewicz, P. and Hanan, J. 1990. “Visualization of
Botanical Structures and Processes using Parametric
L-Systems”, In Scientific Visualization and Graphics
Simulation, D. Thalmann (ed.), pp.183-201, John Wiley
& Sons.

Prusinkiewicz, P., Hanan, J., and Mech, R. 1999. “An
L-System Plant Modeling Language”, In Proc. of the
Int. Workshop AGTIVE'99, M. Nagl, A. Schuerr and M.
Muench (eds), Kerkrade, The Netherlands, September,
LNCS 1779, Springer, pp.395-410.

Prusinkiewicz, P., Hammel, M.S., and Mjolsness, E. 1993.
“Animation of Plant Development”, Computer
Graphics, Vol. 27, No. 3, pp. 351-360.

Prusinkiewicz, P. and Lindenmayer, A. 1990. The
Algorithmic Beauty of Plants, Springer-Verlag, NY.

