Machine Learning

Artificial Intelligence | Machine Learning

Instructor: Ng, Andrew

Course from : Stanford Engineering Everywhere at http://see.stanford.edu

Course Content:

Course Home
Lectures
Syllabus
Handouts
Assignments
Resources

Course Meetings: 20

Lecture 1    View Now >
1 hr 9 min

  • Topics: The Motivation & Applications of Machine Learning, The Logistics of the Class, The Definition of Machine Learning, The Overview of Supervised Learning, The Overview of Learning Theory, The Overview of Unsupervised Learning, The Overview of Reinforcement Learning
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 2    View Now >
1 hr 16 min

  • Topics: An Application of Supervised Learning – Autonomous Deriving, ALVINN, Linear Regression, Gradient Descent, Batch Gradient Descent, Stochastic Gradient Descent (Incremental Descent), Matrix Derivative Notation for Deriving Normal Equations, Derivation of Normal Equations
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 3    View Now >
1 hr 13 min

  • Topics: The Concept of Underfitting and Overfitting, The Concept of Parametric Algorithms and Non-parametric Algorithms, Locally Weighted Regression, The Probabilistic Interpretation of Linear Regression, The motivation of Logistic Regression, Logistic Regression, Perceptron
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 4    View Now >
1 hr 13 min

  • Topics: Newton’s Method, Exponential Family, Bernoulli Example, Gaussian Example, General Linear Models (GLMs), Multinomial Example, Softmax Regression
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 5    View Now >
1 hr 16 min

  • Topics: Discriminative Algorithms, Generative Algorithms, Gaussian Discriminant Analysis (GDA), GDA and Logistic Regression, Naive Bayes, Laplace Smoothing
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 6    View Now >
1 hr 14 min

  • Topics: Multinomial Event Model, Non-linear Classifiers, Neural Network, Applications of Neural Network, Intuitions about Support Vector Machine (SVM), Notation for SVM, Functional and Geometric Margins
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 7    View Now >
1 hr 16 min

  • Topics: Optimal Margin Classifier, Lagrange Duality, Karush-Kuhn-Tucker (KKT) Conditions, SVM Dual, The Concept of Kernels
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 8    View Now >
1 hr 17 min

  • Topics: Kernels, Mercer’s Theorem, Non-linear Decision Boundaries and Soft Margin SVM, Coordinate Ascent Algorithm, The Sequential Minimization Optimization (SMO) Algorithm, Applications of SVM
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 9    View Now >
1 hr 14 min

  • Topics: Bias/variance Tradeoff, Empirical Risk Minimization (ERM), The Union Bound, Hoeffding Inequality, Uniform Convergence – The Case of Finite H, Sample Complexity Bound, Error Bound, Uniform Convergence Theorem & Corollary
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 10    View Now >
1 hr 13 min

  • Topics: Uniform Convergence – The Case of Infinite H, The Concept of ‘Shatter’ and VC Dimension, SVM Example, Model Selection, Cross Validation, Feature Selection
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 11    View Now >
1 hr 22 min

  • Topics: Bayesian Statistics and Regularization, Online Learning, Advice for Applying Machine Learning Algorithms, Debugging/fixing Learning Algorithms, Diagnostics for Bias & Variance, Optimization Algorithm Diagnostics, Diagnostic Example – Autonomous Helicopter, Error Analysis, Getting Started on a Learning Problem
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 12    View Now >
1 hr 14 min

  • Topics: The Concept of Unsupervised Learning, K-means Clustering Algorithm, K-means Algorithm, Mixtures of Gaussians and the EM Algorithm, Jensen’s Inequality, The EM Algorithm, Summary
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 13    View Now >
1 hr 15 min

  • Topics: Mixture of Gaussian, Mixture of Naive Bayes – Text clustering (EM Application), Factor Analysis, Restrictions on a Covariance Matrix, The Factor Analysis Model, EM for Factor Analysis
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 14    View Now >
1 hr 21 min

  • Topics: The Factor Analysis Model,0 EM for Factor Analysis, Principal Component Analysis (PCA), PCA as a Dimensionality Reduction Algorithm, Applications of PCA, Face Recognition by Using PCA
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 15    View Now >
1 hr 17 min

  • Topics: Latent Semantic Indexing (LSI), Singular Value Decomposition (SVD) Implementation, Independent Component Analysis (ICA), The Application of ICA, Cumulative Distribution Function (CDF), ICA Algorithm, The Applications of ICA
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 16    View Now >
1 hr 13 min

  • Topics: Applications of Reinforcement Learning, Markov Decision Process (MDP), Defining Value & Policy Functions, Value Function, Optimal Value Function, Value Iteration, Policy Iteration
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 17    View Now >
1 hr 17 min

  • Topics: Generalization to Continuous States, Discretization & Curse of Dimensionality, Models/Simulators, Fitted Value Iteration, Finding Optimal Policy
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 18    View Now >
1 hr 17 min

  • Topics: State-action Rewards, Finite Horizon MDPs, The Concept of Dynamical Systems, Examples of Dynamical Models, Linear Quadratic Regulation (LQR), Linearizing a Non-Linear Model, Computing Rewards, Riccati Equation
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 19    View Now >
1 hr 16 min

  • Topics: Advice for Applying Machine Learning, Debugging Reinforcement Learning (RL) Algorithm, Linear Quadratic Regularization (LQR), Differential Dynamic Programming (DDP), Kalman Filter & Linear Quadratic Gaussian (LQG), Predict/update Steps of Kalman Filter, Linear Quadratic Gaussian (LQG)
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Lecture 20    View Now >
1 hr 17 min

  • Topics: Partially Observable MDPs (POMDPs), Policy Search, Reinforce Algorithm, Pegasus Algorithm, Pegasus Policy Search, Applications of Reinforcement Learning
  • Transcript: HTML | PDF

YouTube | iTunes | Vyew | WMV Torrent | MP4 Torrent

Related posts: