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Properties of Gradient Vector 
 
The gradient vector of a scalar function 1 2( , , , )nf x x x  is defined as a column vector 
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For example 
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The normalized gradient vector 
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For example, at the point  * *

1 2.6, 4x x= =
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Property 1. The gradient vector represents a direction of maximum rate of increase for 
the function ( )f x  at . For example,   *x
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If we increase  in the direction x c  by a step size of .5α =  
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The function value becomes 
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If we move in a direction [ ]1 0 T  
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The function value becomes 
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If we move in a direction [ ]0 1 T  
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The function value becomes 
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We can see that moving along the gradient direction results in the maximum increase in 
the function.  
 
Property 2. The gradient vector  of c 1 2( , , , )nf x x x  at the point  is orthogonal 
(normal) to the tangent plane for the surface . For example, 

 the slope at 
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The direction of the tangent line is given by 
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c  and  are normal each other as t
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Property 3. The maximum rate of change of ( )f x  at any point  is the magnitude of 
the gradient vector given by 
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Steepest descent direction. Let ( )f x  be a differentiable function with respect to . The 
direction of steepest descent for 

x
( )f x  at any point is  
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2

 
 
Example. Use the steepest descent direction to search for the minimum for 

2
1 2 1 2( , ) 25f x x x x= +  starting at [ ](0) 1 3 T=x  with a step size of .5α = . The function 

value at the starting point is 
 

(0) 2 2( ) 25(1) 3 34f = + =x  
 
An analytical solution revealsthat the minimum point is at [ ]* 0 0 T=x  and . Let 
us start the process of iterations. 
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(5) 2 2( ) 25( .2662) (1.7269) 4.7537f = − + =x  

 
It is noted that the function values start to oscillate, i.e., not monotonically reduce. This is 
caused by the constant step size. When the search is near the minimum, a smaller step 
size should be used. Otherwise, an “overshoot” will occur. Overshoot means that we 
move along the steepest direction more than needed. As a matter of fact, we are supposed 
to find the best step size at each iteration by conducting a one-D optimization in the 
steepest descent direction. For example, the new point can be expressed as a function of 
step size α , i.e., 
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(1) 2 2( ) 25(1 .9929 ) (3 .1191 )f α α= − + −x  

 
(1)( )f x  is a function of α . Using the analytical approach, we get 
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8.29f =  is the minimum value we can find at this iteration. 

 
Steepest descent algorithm 
 
Step 1. Estimate a starting design  and set the iteration counter (0)x 0k = . Select a 

convergence parameter 0ε > . 
Step 2. Calculate the gradient of ( )f x  at the point  as . Calculate ( )kx ( ) ( )(k f= ∇c x )k

T=c c c . If ε<c , then stop the iteration process as * (k )=x x  is a minimum 
point. Otherwise, go to Step 3. 

Step 3. Let the search direction at the current point  as .  ( )kx ( ) ( )k k= −d c
Step 4. Calculate a step size ( )kα  to minimize . A one-dimensional 

search is used to determine 

( ) ( ) ( )( k k kf α+x d )
( )kα . 

Step 5. Update the design as . Set ( 1) ( ) ( ) ( )k k kα+ = +x x d k 1k k= +  and go to Step 2. 
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