
Teaching Distributed Programming Concepts
using a Java and Logo-based Framework

Thanaporn Chochai1

Telecom. and Network Research and
Development Division

NECTEC
Rajtawe, Bangkok 10400, Thailand

rung@ttl.nectec.or.th

Andrew Davison1

Dept. of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla 90112, Thailand

dandrew@ratree.psu.ac.th

Abstract1

This work describes a Java and Logo-based
framework, which facilitates an understanding of
distributed programming in an active learning setting.

The framework, called MultiWorldLogo,
simulates multiple separated grids (worlds) with
interacting entities, teaches the elements of message
passing, and introduces the mobile agent paradigm. It
includes system-configurable unreliability (i.e.
messages may disappear or arrive out of order), and
two forms of mailbox. The visualization of these
complex ideas is fully realized; animation is used to
model the dynamic notions of entity movement,
migration, and message passing.

Keywords/phrases
Interactive learning environment, multimedia and
visualization in classroom teaching, logo-based
framework, Java, understanding distributed
programming.

1 Introduction
The vast range of distribution scenarios,
combined with the spectrum of choices in
cooperation and communication, make distributed
programming one of the hardest practical areas of
computing [1]. Although many languages and
systems can be used for explaining distributed

1
 This work was started while the authors were

members of the CSIM Program at the Asian Institute
of Technology (AIT), Bangkok, Thailand. Its
generosity is kindly appreciated

ideas, they are frequently too complex and/or too
detailed for novices (e.g. RMI and CORBA).

Active learning is the notion that a student
learns best by taking part in the learning process
rather than passively receiving instruction [4].
The Logo programming language has a long
history as an excellent active learning tool. Logo
encourages the development of problem-solving
skills without being too rich a language.

Our Java-Logo framework supports the
teaching of distributed programming ideas within
the context of a simulated world of ‘grids’
inhabited by mobile entities, mailboxes, and
messages. Communication can be configured to
be unreliable (i.e. messages disappear, arrive out
of order). Entities move around a grid, and can
migrate between grids. The framework exists as a
set of Java classes which support these
distribution concepts in a Logo-like style.

2 Logo Background
StarLogo is a massively parallel programming
language for developing decentralized systems
(i.e. those without a central controlling unit) [5]. It
supports 1000's of concurrently executing turtles.
Each one follows a set of simple rules which lead
to an emergent pattern of behavior for the whole
system. The single grid is divided into small
squares called patches. Each patch has the same
computational attributes as a turtle, but cannot
move.

StarLogo was the inspiration for the Java-
based framework developed in [6]. Its main
contribution is the idea of representing turtles,
patches, and the grid, as classes. This permits

applications to subclass the basic framework,
which facilitates prototyping.

The aims of both systems are to teach
concurrent programming notions, such as agency
decomposition and synchronization. Our work
extends these ideas to a distributed setting of
multiple grids.

Orespics-PL contains traditional imperative
statement primitives, such as repeat, while, if,
in addition to the usual Logo commands [2,3].
Moreover, the language offers a wide range of
primitives for synchronous and asynchronous
communication between turtles residing on a
single grid, including broadcasting and
multicasting. This means that both centralized and
decentralized models can be represented.
However, the single grid basis of the system
prevents issues related to unreliable
communication between grids from being
explored.

3 Framework Details
Our Java-Logo framework, called
MultiWorldLogo, has six main components used
for programming:

Grid. Turtles can move about (and between)
grids. Multiple grids offer an analogy with
physically separated distributed systems. Each
grid has a unique ID, which allows it to be
addressed easily. A grid consists of StarLogo-
style patches.

Turtle and Patch. The Turtle and Patch
classes support basic methods (e.g. turtle
movement).Through inheritance, new types of
turtles and patches can be defined in a
straightforward manner. The turtle and patch
classes inherit from the PatchTurtle class which
holds common functionality, such as position
information. Patches and turtles can be supposed
to perform their activities in parallel. However,
this parallelism is actually modeled as a sequence
of discrete steps: a time-stepping algorithm
updates all the entities in each time interval.

Message. A message includes the sender and
receiver IDs: a message can only be addressed to
one receiver; there is currently no broadcasting or
multicasting. In an unreliable communications
environment, messages may not arrive, or arrive

in a different order from which they were sent.
This introduces students to important problems
inherent in distributed models. Messages are sent
to mailboxes.

Mailbox. The advantage of mailboxes is
support for asynchronous, decoupled
communication: a sender need not wait for a
receiver before sending a message. The
framework contains turtle and patch mailboxes. A
turtle mailbox is automatically created for each
turtle; only the turtle owner can read its messages.
A patch mailbox may be placed on a patch, and so
can be shared by turtles. However, messages can
only be read by their designated receiver.

Name server. When a turtle wishes to
communicate with turtles on other grids, or to
migrate to a different grid, it needs to know the
destination grid ID. The name server offers a
service for finding grid references.

Our framework is partly based on the one in
[6]. The main area of commonality is the use of a
time-stepping algorithm to update the turtles and
patches in lock-step. This is implemented by a
MainLoop object calling the update() method
in each turtle and patch at every time step. When
every entity has been updated the display is
redrawn. The practical advantage of this approach
is the simplicity of writing turtle and patch
behaviours, which usually only requires the
subclassing of Turtle and Patch, and the
implementation of their update() methods
(together with any support methods and state
variables).

Our framework significantly differs from [6]
in its emphasis on distributed programming
elements: their framework does not support
multiple grids, message passing, patch and turtle
mailboxes, turtle migration, or a name server.

The Display class in our framework is
considerably more complex than the one in [6].
Message passing is animated: 'envelopes' travel
from a sender to a receiver, which may disappear
in a 'cloud of smoke' if the communication is
unreliable. Turtle migration is displayed as a
turtle encased in an 'ice block' which travels
between the grids. There is an information output
window, which can be written to directly by
application code; details are also placed there
when the user clicks on entities at run time.

4 A Direct Sales Application
In this example, we use the MultiWorldLogo
framework to implement a direct sales simulation.
It illustrates the use of reliable message passing
between different types (subclasses) of turtles,
and utilizes turtle mailboxes and migration. In the
next section, this application is modified to handle
communication in an unreliable setting.

The basic elements of the system are agency
members (salespersons) and customers. Agency
members obtain their goods from distribution
centers. Agency members and customers are
allocated to distinct regions.

Agency members hold products which a
customer orders from them. If a product runs out,
the agency member must visit a distribution
center to restock before it can fill a customer's
order. A distribution center may be located in a
different region from the agency member's, which
requires the member to migrate to that region (and
back again afterwards).

At start-up time, a customer does not have an
assigned agency member. Agency members and
customers must travel around their region looking
for suitable partners. When an agency member
and a customer meet at a patch, the customer will
use that agency member as its representative for
future purchases.

When a customer orders a product (by
message passing), it waits until the product has
been sent to it (as a message) by the agency
member. After the customer has used a product
for a certain period, the product expires, and the
customer must order it again.

Agency and Customer are subclasses of
Turtle, PatchRegion (the distribution center class)
is a subclass of Patch, Region is a subclass of
Grid.

Figure 1 shows a typical moment in the
execution of the direct sales example. The canvas
on the left shows the four grids used in this
example (labeled Grid0-3, from left to right, top
to bottom). Customers are shown as black turtles,

Figure1. Product Delivery.

agency members in red (gray). There is only one
distribution center (a green (gray) square) in
Grid2.

The text area on the right details the pattern
of communication between the turtles. At the time
of the screen shot, Agency3 in Grid1 is sending
a second product (represented by an 'envelope') to
Customer4.

We now examine the coding details for the
Agency, Customer and PatchRegion classes.

4.1. The Agency Class
Agency holds a product amount, and codifies the
behavior of an agency member in its update()
method. If the product amount is greater than
zero, the agency member will try to recruit a
customer via findCustomer().

Agency will send a product to a customer
when it receives an order through responseMail
(). However, if it has run out of products, it will
try to get more by calling findMoreGoods(),
which causes it to migrate to a region that
contains a distribution center.

The Agency code in outline:

public class Agency extends Turtle
{ :
 int goodsAmnt = INIT_GOODS_AMNT;
 boolean ready = true; // has some product

:
 public void update(){
 if (ready) { // has some product
 findCustomer(); // find a customer
 responseMail(); // respond to customer
 }
 else // doesn’t have any product
 findMoreGoods(); // goto a dist. center
 }

:
 } // end of Agency class

responseMail() extracts an order from the
agency's mailbox. It uses sendGoods() to send
back a product:

private void responseMail()
{ PatchTurtle sender;
 // check the mailbox
 while (!(itsMailbox.isEmpty()) && ready) {
 Msg recvMsg = itsMailbox.getMsg();
 String msgType =
 (String)recvMsg.getData();
 sender = recvMsg.getSender();
 if (msgType.equals("order"))
 { // an order message

 sendGoods((Customer)sender);
 if (goodsAmnt == 0) {
 ready = false; // out of product
 setColor(Color.yellow);
 }
 }}
}

When the agency member has run out of products,
findMoreGoods() uses moveToSellRegion

() to find a distribution center, and migrate to its
region:

private void moveToSellRegion()
{ Region r;
 int i = 0;
 Vector v = getAllGridRef();
 // find a grid with a dist. center
 do {
 r = (Region)v.elementAt(i);
 i++;
 } while ((!r.hasSellPoint()) &&
 (i < v.size()));
 if (i < v.size())
 migrate(r); // goto region (grid) r
}

4.2 The Customer Class
A customer can be in one of three states:

1. It has not yet found an agency member
(represented by the constant
STATE_NO_AGENCY);

2. It has an assigned agency member
(represented by the constant
STATE_NORMAL). This means it can send the
agency an order message, but only if the
customer currently has no product.

3. The customer has placed an order, and is
waiting for a product to be sent (represented
by the constant STATE_WAIT_GOODS)

After receiving a product, the customer will
change back to STATE_NORMAL. The 'lifetime' of
the product will gradually decrease until it reaches
zero, then the customer will place a reorder. The
behaviour:

public class Customer extends Turtle
{ :
 public void update()
 {
 switch (state) {
 case STATE_NO_AGENCY:
 forward(1);
 break;
 case STATE_NORMAL: // has agency
 if (timeForGoods == 0) { // no product
 makeOrder();

 state = STATE_WAIT_GOODS;
 setColor(Color.magenta);
 }
 else // customer has a product
 timeForGoods--; // decrease 'life'
 break;
 case STATE_WAIT_GOODS:
 String rec;
 if ((rec = receive()) != null) {
 if (rec.equals("goods")) {
 // got a goods message?
 timeForGoods = LIFETIME;
 state = STATE_NORMAL;
 setColor(Color.blue);
 }
 }
 break;
 }
 } // end of update()

 private void makeOrder()
 { // make an order by sending mail
 Msg order =
 new Msg(this,itsagency,"order");
 sendMail(getMailboxOf(itsagency), order);
 }
 :
} // end of Customer class

4.3. The PatchRegion Class
The PatchRegion class can represent a
distribution center. When hasSellPoint is true,
it checks for the presence of turtles which are
agency members and need products:

public class PatchRegion extends Patch
{ :
 public void update()
 {
 if (hasSellPoint) { // distribute products
 Vector v = allTurtleHere();
 for (int i = 0; i < v.size(); i++) {
 Turtle t = (Turtle)v.elementAt(i);
 if (t instanceof Agency) {
 // is turtle an agency?
 Agency a = (Agency)t;
 a.setGoodsAmnt(INIT_GOODS_AMNT);
 }
 }}
 }
} // end of PatchRegion class

5 Direct Sales with Unreliable
Communication
This is essentially the same application as
described in section 4, except that communication
is no longer reliable. The degree of unreliability is
controlled by two system-wide variables: one for
the rate of message disappearance, the other for
the likelihood of reordering.

The application programmer (the student) is
now forced to implement different behavior for
the agency members and customers to ensure that
communication between entities remains reliable.

When a customer places an order with an
agency member, it sets a waiting time which
decreases with each time step. If it reaches zero
and no product has arrived, the customer will
reorder the product. When a customer receives a
product, it sends an acknowledgment back to the
agency member.

The changes to the Agency class are
localised in responseMail(). An agency
member must check whether a message from a
customer is a new order or a reorder. This is
achieved by using an acknowledgement table to
record which customer orders have already been
processed. The crucial coding design is to allocate
a unique ID to each order message; if an incoming
message has the same ID as an earlier one from
the same customer then it is a reorder. The agency
member responds to a reorder by sending the
product again without decreasing its product
amount.

6 Discussion
MultiWorldLogo is an educational tool to help
students grasp the ideas of distributed
programming through active learning. The
framework consists of Java classes which
simulate multiple platforms (grids), message
passing and mailboxes, communication in the
presence of message loss and reorder, and entity
mobility.

Java's object oriented paradigm allows the
complexity of distributed programming to be
abstracted. Inheritance and polymorphism permit
core functionality (e.g. turtles, patches, and grids)
to be extended easily. Java's large GUI libraries
means that execution has been visualized in
several ways. The Java language is simpler than
many imperative and object oriented languages,
primarily due to its lack of explicit pointers, and
its strong error detection.

To date, MultiWorldLogo has not been
widely utilized by students since the course in
which it would appear ("Client/Server Distributed
Systems") is currently offered to students before

the Java course. This will be rectified in the next
academic year.

The present MultiWorldLogo is a standalone
framework which simulates multiple grids. The
next version, which is currently under
development, is truly distributed. The educational
benefit will be that an application becomes the
joint work of several students, encouraging group
learning. Such an approach highlights problem
solving based on cooperation (and conflict) since
an application consists of separately designed
entities with their own behaviours.

References
[1] Berson, A. Client/Server Architecture,

McGraw-Hill, 2nd edition, 1996.

[2] Capretti, G., Cisternino, A., Lagana, M.R.,
and Ricci, L. "A Concurrent Microworld", In
Proc. of the World Conf. on Educational
Multimedia, Hypermedia and
Telecommunication, EDMEDIA'99, 1999.

[3] Capretti, G., Lagana, M.R., and Ricci, L.
"Decentralized Programming of
Communicating Turtles", In Proc. of the
EUROLOGO'99, 169-178, 1999

[4] Papert, S. Mindstorms: Children, Computers,
and Powerful Ideas, Basic Books, 1980.

[5] Resnick, M. Turtles, Termites, and Traffic
Jams: Explorations in Massively Parallel
Microworlds, Bradford Books, The MIT
Press, 1995.

[6] Winder, R. and Roberts, G. Developing Java
Software, John Wiley, 1998.

